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Is one forecast better than another?
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I Operational centers want to know which prediction system to use.

I Modelers want to know if prediction system changes improved skill.

I Users want to know how prediction systems have performed in past.

I Scientists want to know if improvement is from: model resolution,
initialization, model physics, ensemble format, recalibration.
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Ratio of root mean square error of initialized over uninitialized decadal

hindcasts. Dots indicate where the ratio is significantly above or below 1

with 90% confidence using a two-sided F-test.

IPCC AR5 WG1 fig. 11.4
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Anomaly correlations of the North Atlantic Subpolar Gyre OHC

anomalies (circle). The bar indicates the two-sided 90% confidence

interval using Fishers z transform.

Msadek et al., 2014, J. Climate
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Test Equality of Variance (σ2
1 = σ2

2)

Statistic: Let s2
1 and s2

2 be the sample variances:

F =
s2

1

s2
2

.

Theorem: If samples are independent and identically distributed as a
Gaussian, then

F ∼ Fν1,ν2 .

where ν1 and ν2 are the appropriate degrees of freedom.
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Errors Computed over Same Period are not Independent

o = so + no observation

f1 = s1 + n1 forecast 1

f2 = s2 + n2 forecast 2

The covariance between forecast errors is

cov[f1 − o, f2 − o] = cov[s1 − so , s2 − so ] + var[no ]
cov. of errors correlated signal errors obs. noise var.

Since the covariance never vanishes, errors are not independent.
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Correlated Errors Tend to be Closer to Each Other

ratio of errors =

∑
n(f1 − o)2∑
n(f2 − o)2

=

∑
n (s1 − so + n1 − no)2

n∑
n (s2 − so + n2 − no)2

n

Top and bottom sums involve no , so the ratio will be closer to
unity than would be the case if all terms were independent.
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MSE1 / MSE2
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Response from IPCC

The reviewer is right ... However, no methodology appropriate for
the decadal prediction problem is yet available. The methodology
used is described in Doblas-Reyes et al (2013) ... intends to be
more conservative than the typical formula described in the text

book of von Storch and Zwiers.
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Impact of Correlated Errors

For large sample size N,

var

[
MSE1

MSE2

]
≈ 4

N

(
1− R2

)
,

where R is the correlation between forecast errors.

DelSole and Tippett, 2014: Comparing Forecast Skill. MWR.
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Error ratio for randomly selected parameters of an idealized
forecast/observation system
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DelSole and Tippett, 2014: Comparing Forecast Skill. MWR.
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Test Equality of Correlations (ρ1 = ρ2)

Transform to a Gaussian variable using Fisher Z-transformation:

z ≡ 1

2
ln

(
1 + ρ

1− ρ

)
.

Apply standard t-test for a difference in means: i.e., test z1 = z2

Assumes the two correlations computed from independent data.
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Correlations Reduce the Variance of Correlation Differences

var[z1 − z2] =
2

N − 3
(1− Γ) where Γ = cor[z1, z2]

For large N and Gaussian distributions,

Γ =
ρ12

(
1− ρ2

o1 − ρ2
o2

)
− ρo1ρo2

(
1− ρ2

o1 − ρ2
o2 − ρ2

12

)
/2(

1− ρ2
o1

) (
1− ρ2

o2

) .

DelSole and Tippett, 2014: Comparing Forecast Skill. MWR.
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Variance of Difference in Zs for randomly selected
parameters of an idealized forecast/observation system
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North American Multi-Model Ensemble

I Hindcasts initialized every month from 1982-2010

I At least 8 month lead

I Analyze NINO3.4

I Separate climatologies for 1982-1998 and 1999-2010

I Verification: OISST

model ensemble size

CMC1-CanCM3 10
CMC2-CanCM4 10

COLA-RSMAS-CCSM3 6
GFDL-CM2p1 10
NASA-GMAO 10
NCEP-CFSv1 10
NCEP-CFSv2 10
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Skill estimates tend to be correlated in seasonal forecasting.
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Summary

1. Commonly used tests for skill differences are not valid if skills are
computed using a common set of observations.

2. These tests do not account for correlations between skill estimates.

3. These tests are biased toward indicating no difference in skill.

4. The bias can be characterized by a few parameters that can be
estimated from data.

5. The bias is substantial for typical seasonal forecasts.

Familiar tests wrongly judge that differences in forecast skill are
insignificant.
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What IS the proper way to compare forecast skill?
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“The literature contains literally thousands of
forecast-accuracy comparisons; almost without exception,
point estimates of forecast accuracy are examined, with no

attempt to assess their sampling uncertainty.”

Diebold and Mariano (1995)
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Skill of Single Events

Identify Events When Forecast H has more skill than Forecast T.
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T

Null hypothesis: probability that H has more skill than T is 50/50.

I No caveats about independence.

I No assumptions about distribution of forecast errors.

I No restrictions on the criterion for deciding skill.
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Random Walk Test

Identify Events When Forecast H has more skill than Forecast T.
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Null hypothesis: Counts follow a binomial distribution with p=1/2.
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Visualizing the Verification: Random Walks
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Remove climatologies based on 1982-1998 training
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Comparison of Monthly Mean NINO3.4 Hindcasts of NMME Models

1982−1998 CLIM; lead= 2.5; alpha= 5%
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Comparison of Monthly Mean NINO3.4 Hindcasts of NMME Models

1982−1998 CLIM; lead= 2.5; alpha= 5%
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Multimodel Mean
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Statistical Prediction

T̂m+τ = b̂m,τ + âm,τTm,

where b̂m,τ and âm,τ are least squares estimates of the slope and
intercept estimated from independent data.
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NMME Rankings for 1999-2014 NINO3.4 Hindcasts

1. CanCM3, Linear regression model

2. CanCM4

3. FLOR-A, FLOR-B, Multi-model mean

4. NASA, CM2p1-AER

5. CCSM3

6. CCSM4

7. CFSv2 (because of “dual climatology”)

bias correction based on 1982-1998
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Compare to CFSv2 using Sign Test Based on MSE
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Compare to CFSv2 using F-test Based on MSE
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Compare to CFSv2 using Correlation Test
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Minerva Compare T319 with T639

Only May and Nov ICs
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Exchangeability

Are the ensemble members distinguisable?
Compare skill of different ensemble members

from same model.
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Strictly Exchangeable

CanCM3: Different A-L-I-O initializations starting from different ICs

CanCM4: Different A-L-I-O initializations starting from different ICs

FLOR-A: Ensemble data assimilation

FLOR-B: Ensemble data assimilation

CM2p1-AER: Ensemble data assimilation

IRI-D: A-L initialized from AMIP runs

IRI-A: A-L initialized from AMIP runs

Not Strictly Exchangeable

NASA: some lagged ensemble, some breeding vectors

CCSM3: A-L-I initialized from different years in long control

CCSM4: Lagged ensemble for A, same I initialization as CCSM3

CFSv1: Lagged ensemble for A (more widely spaced than CFSv2)

CFSv2: Lagged ensemble for A-L

48 / 59



If some forecasts are better than others, then
can we combine them to improve skill?
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Model Diversity vs. Ensemble Size

SKILL(V ;F1,F2) > SKILL(V ;F1)

Skill could be improved by

larger ensemble size addition of new signals
-or-

reduction of noise model diversity
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Information Theory

SKILL(V ;F1,F2) = SKILL(V ;F1) + SKILL(V ;F2|F1)
Multimodel Single-model Conditional

Mutual Information Mutual Information Mutual Information

The condition for skill to increase by adding another forecast is

Conditional Mutual Information > 0
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Gaussian Distributions

SKILL(V ;F2|F1) = −1

2
log
(

1− ρ2
v2|1

)
ρv2|1 = partial correlation between V and F2 conditioned on F1:

If skill comes from reduction of noise, then

ρnoise
V 2|1 ≤

√
E2

(E1 + E2)(E1 + 1)
.

where E1 and E2 are the ensemble sizes of F1 and F2.

DelSole, Nattala, Tippett, 2014, Geophys. Res. Lett.
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Statement of the Question

o: observations

f1: forecast 1

f2: forecast 2

I The skill of a forecast f1 can be measured by correlation:

ρ = cor [o, f1]

I The skill of the best linear combination of f1 and f2 can be
measured by the multiple correlation

R = max
β1,β2

cor [o, β2f1 + β2f2]

Question: Is R > ρ?
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Statistical Test

ρ = max
β1

cor [o, β1f1]

R = max
β1,β2

cor [o, β1f1 + β2f2]

I The hypothesis R = ρ is equivalent to the hypothesis β2 = 0.

I Testing the hypothesis β2 = 0 is standard and is based on

t =
β̂2

se2

I It can be shown that

t2 =
R2 − ρ2

1− R2

N − 3

1
=

SSE1 − SSE1+2

SSE1+2

N − 3

1
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Equivalent Interpretation of the Test

A significant t-value means: if the forecast f1 is regressed out of f2,
the residual forecast f ′2 still has skill.
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Combined Forecast

I We consider only equal weighting schemes.

I Equal weights is very competitive with more sophisticated schemes

I Kharin and Zwiers, 2002, J. Climate
I Hagedorn et al. 2005, Tellus A
I Weigel et al. 2010, J. Climate
I DelSole et al. 2012, J. Climate
I Sansom et al. 2013, J. Climate
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Improvement in NINO3.4 skill
due to combining models

Conditional Mutual
Information

5% significance ≥ 0.08

pure noise ≤ 0.22
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Summary

1. Skill measures computed on a common period or with a common
set of observations are not independent.

2. Standard tests for differences in correlation or MSE are biased when
evaluated over common period.

3. Random walk test avoids these problems and moreover applies to
non-Gaussian distributions and arbitrary skill measures.

4. Canadian models are the most skillful dynamical models in NMME,
even when compared to the multi-model mean.

5. A regression model is significantly more skillful than all but one
dynamical model in the NMME (to which it is equally skillful).

6. There are significant skill differences between ensemble members
from same model in NMME, reflecting differences from initialization.

7. Multimodel ensembles have higher skill than any single model, and
this increase is due to model diversity, not increased ensemble size.
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